

Installation Manual Series PCD 00A-400

Design ≥ 40

Electronics for Proportional Pressure/ Throttle Valves

Parker Hannifin

Manufacturing Germany GmbH & Co. KG

Industrial Systems Division Europe

Gutenbergstr. 38 41564 Kaarst, Germany

E-mail: isde.kaarst.support@support.parker.com

Copyright © 2022, Parker Hannifin Corp.

WARNING — USER RESPONSIBILITY

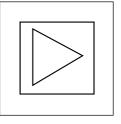
FAILURE OR IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS DE-SCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE.

This document and other information from Parker-Hannifin Corporation, its subsidiaries and authorized distributors provide product or system options for further investigation by users having technical expertise.

The user, through its own analysis and testing, is solely responsible for making the final selection of the system and components and assuring that all performance, endurance, maintenance, safety and warning requirements of the application are met. The user must analyze all aspects of the application, follow applicable industry standards, and follow the information concerning the product in the current product catalog and in any other materials provided from Parker or its subsidiaries or authorized distributors.

To the extent that Parker or its subsidiaries or authorized distributors provide component or system options based upon data or specifications provided by the user, the user is responsible for determining that such data and specifications are suitable and sufficient for all applications and reasonably foreseeable uses of the components or systems.

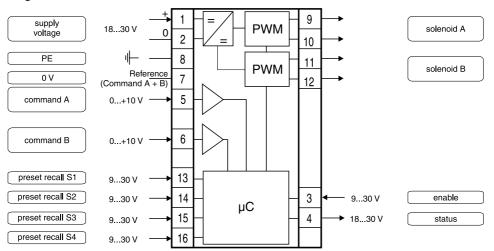
Installation Manual


Parker electronic modules series PCD00A-400 for rail mounting are compact, easy to install and provide time-saving wiring by disconnectable terminals. The digital design of the circuit results in good accuracy and optimal adaption for proportional pressure/flow control valves by a comfortable interface program.

Features

The described electronic unit combines all necessary functions for the optimal operation of two proportional pressure/flow control valves (series R*V, RE*E*W, RE06M*W, DUR, PRPM, VBY, VMY, TDA, TEA). The most important features are:

- · Digital circuit design
- · Two independent operable amplifiers
- · Four parameterizable preset recall channels
- · Constant current control
- Two input stages 0...10 V
- Status output
- · Two up/down ramp functions
- · Enable input for solenoid driver
- · Status indicator
- · Parametering by USB interface



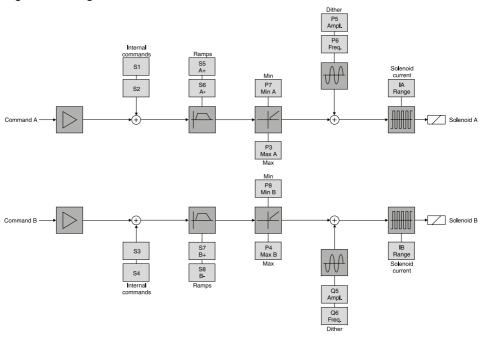
- · Connection by disconnectable terminals
- Compatible to the relevant European EMC standards
- Comfortable PC user software, free of charge: www.parker.com/isde see "Support", or directly at www.parker.com/propxd.

Diagram



Technical Data

General				
Model		Module package for snap-on mounting on EN 50022 rail		
Package material		Polycarbonate		
Inflammability class		V0 acc. UL 94		
Installation position		Any		
Ambient temperature ran	ge [°C]	-20+60		
Protection class		NEMA 1/IP20 acc. EN 60529		
Weight [g]		160		
Electrical				
Duty ratio	[%]	100		
Supply voltage	[VDC]	1830, ripple < 5 % eff., surge free *)		
Switch-on current typ.	[A]	22 for 0.2 mS		
Current consumption max. [A]		5.0		
Pre-fusing [A]		6.3 A medium lag		
Command signal [V]		0+10, ripple < 0.01 % eff., surge free, Ri = 150 kOhm		
Input signal resolution	[%]	0,025		
Differential input voltage max. [V		30 for terminals 5 und 6 against PE (terminal 8)		
Enable signal	[V]	04.0: Off / 9.030: On / Ri = 30 kOhm		
Channel recall signal	[V]	04.0: Off / 9.030: On / Ri = 30 kOhm		
Status signal	[V]	00.5: Off / Us: On / rated max. 15 mA		
Adjustment ranges Min Max Ram Curr	ıp [s]	050 50100 032.5 0.8/1.3/1.8/2.7/3.5		
Interface		USB type B		
EMC		EN IEC 61000-6-2, EN IEC 61000-6-4		
Connection		Screw terminals 0.22.5 mm², disconnectable		
Cable specification [AWG] [AWG]		overall braid shield for supply voltage and solenoids overall braid shield for sensor and signal		
Cable length [m]		50		

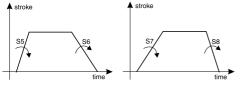

^{*)} If solenoids with a nominal voltage of 24 V are connected, the supply voltage has to be raised to 29 V.

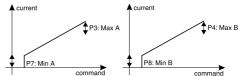
Ordering Code

Signal Flow Diagram A

Commands

Additionally to the external analogue command inputs (Pins 5-7 and 6-7), the PCD00A-400-electronic includes, for each channel, two internal programmable command values S1 to S4, which can be activated by the switching inputs (Pins 13, 14, 15, 16). S1 (Pin 13) has a higher priority than


S2 (Pin 14) and S3 (Pin 15) has a higher priority than S4 (Pin 16).


If only one amplifier channel is used, it is possible to switch all four internal commands to this channel by setting parameter N=1.

Ramp-function / Min-Max-function

The PCD00A-400-electronic includes two internal programmable ramps for each channel. Addition-

ally a current step may be programmed (Min) and / or the current may be limited (Max) for each

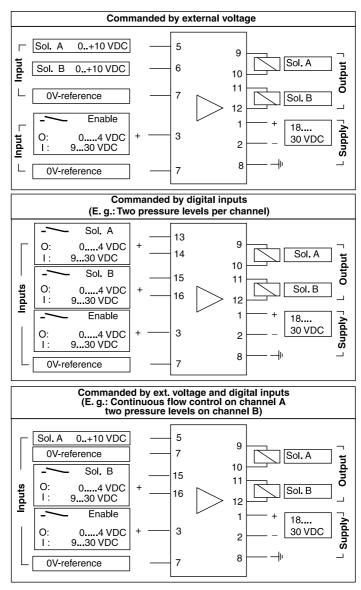
Nominal current adjustment

The nominal current can be adjusted by one parameter separately for each channel (Pin 9, 10, or 11, 12). The default nominal current is 800 mA.

Parameterization

All of the following parameter values can be changed via a USB connection (type B) using the user software.

The connected valves may not operated before loading an appropriate parameter set from the PC into the module electronics.


Example of parameter chart

Parameter	Range	Default value	Unit	Function	
P3	50.0100.0	100.0	%	max. current A-channel	
P4	50.0100.0	100.0	%	max. current B-channel	
P5	0.010.0	0.0	%	Dither amplitude A-channel	
P6	0300	0	Hz	Dither frequency A-channel	
P7	0.050.0	0.0	%	Min. current A-channel	
P8	0.050.0	0.0	%	Min. current B-channel	
Q5	0.010.0	0.0	%	Dither amplitude B-channel	
Q6	0300	0	Hz	Dither frequency B-channel	
S1	0.0+100.0	0.0	%	Internal command 1	
S2	0.0+100.0	0.0	%	Internal command 2	
S3	0.0+100.0	0.0	%	Internal command 3	
S4	0.0+100.0	0.0	%	Internal command 4	
S5	032500	0	ms	Ramp UP A-channel	
S6	032500	0	ms	Ramp DOWN A-channel	
S7	032500	0	ms	Ramp UP B-channel	
S8	032500	0	ms	Ramp DOWN B-channel	
IA	0, 1, 2, 3, 4	-	_	Nominal current A-channel, 0=0.8 A; 1=3.5 A; 2=2.7 A; 3=1.8 A; 4=1.3A	
IB	0, 1, 2, 3, 4	-	-	Nominal current B-channel, 0=0.8 A; 1=3.5 A; 2=2.7 A; 3=1.8 A; 4=1.3 A	
n	1, 2	2	_	Allocation of internal command signals	

All parameters are saved in an EEPROM and become active directly after supply voltage is switched on. PCD00A 3236-M1 UK.indd CM 12.05.22

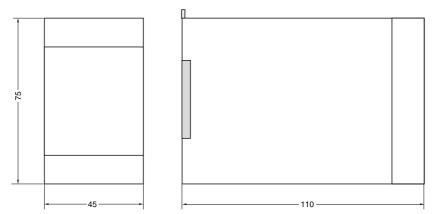
Connection Examples

Certainly combinations and / or modifications of these examples are possible. The priority of the digital inputs over the analogue inputs has to be kept in mind! Via parameter N=1 all four digital inputs may be dedicated to channel A.

Pinning

Pin	Des	Pin	Description		
1	+ supply	1830 VDC	9	channel A	
2	GND supply	0 VDC	10	channel A	
3	Enable input	930 VDC	11	channel B	
4	Status output	0 VDC / 1830 VDC	12	channel B	
5	Cmd. A-channel	0+10 VDC	13	int. command 1	0 VDC / 1830 VDC
6	Cmd. B-channel	0+10 VDC1	4	int. command 2	0 VDC / 1830 VDC
7	GND cmds./dig.IO	0 VDC	15	int. command 3	0 VDC / 1830 VDC
8	PE	Earth	16	int. command 4	0 VDC / 1830 VDC

Enable input and status output


The enable input activates (9...30 VDC) the power amplifiers or deactivates them (0 VDC). The status output delivers 18...30 VDC during normal operation. It switches to 0 VDC in case of an error.

Standard Parameters

Valve	Solenoid	Nominal	Current	Dither		
		I _{max} A-side (IA)	I _{max} B-side (IB)	Amplitude (P5)	Frequency (P6)	
TDA	L	1.3 A (4) a. P3=80.7	1.3 A (4)	1.6	21	
	М	2.7 A (2)	2.7 A (2)	0.8	21	
DSA	L	1.3 A (4)	1.3 A (4)	1.6	88	
VBY/VMY	L	0.8 A (0)	0.8 A (0)	2.4	88	
	М	2.7 A (2)	2.7 A (2)	2.4	88	

Please obey supply voltage (see technical data sheets).

Dimensions

Installation Manual

Electronic Prop. Pressure/Throttle Valves Series PCD 00A-400

Installation guide to electronic modules to provision of electromagnetic compatibility

Power Supply

The utilized power supply has to comply with the EMC-standards (CE-sign, certificate of conformity).

Relais and solenoids operating from the same supply circuit as the valve electronics have to be fitted by surge protection elements.

Wiring Cable

The wires between the installation site of the module and the peripheral units, as power supply, valve solenoids, position transducer, command signal source have to be shielded. The following wire sizes must be reached: power supply AWG 16, other connections AWG 20. The capacity should not exceed a value of approx. 130 pF/m (wire/wire). The maximum cable length is 50 m. No power current lines may be placed within the wired shielded cables to the electronic module. The cable shield has to be connected to ground at both ends (see also chapter "Grounding"). Please be aware of ground loops.

Installation

The module has to be mounted within a conductive, shielded enclosure. Usable is i.e. an EMC-approved control cabinet. A perfect grounding of the enclosure is mandatory (see also chapter "Grounding").

Grounding

The mounting plate of the valve has to be connected to the grounded metal machine frame. The cable shields must be tied to ground at the control cabinet. A low-ohmic potential compensation wire has to be provided between the control cabinet and the machine frame (cable wire >AWG 7 cross section) to prevent ground loops.

